On a New Type of Cyclododecatriene - Silver Nitrate Complex

By Shunsuke Kuribayashi, Noritake Yasuoka, Toshiko Mitsui, Hiroshi Takahashi and Muneaki Yamaguchi

(Received June 19, 1964)

In the course of X-ray work on the cyclododecatriene-silver nitrate complex, we have found a new type of complex.

Zakharkin and Korneva reported¹⁾ that trans, trans, cis-cyclododecatriene-1, 5, 9 (abbreviated t, t, c-CDT) forms a complex with silver nitrate and gave it the formula (C₁₂H₁₈)AgNO₃ (m. p. 166~167°C). This complex crystallizes as a platelet. In the course of a structure analysis by X-ray diffraction, we found a few needlelike crystals among them. These needles gave X-ray diffraction patterns different from those of platelets. We cite below the former (needles) as the β -type and the latter (platelets) as the α -type. The β -type crystal melts at 149°C and was found by elementary analyses to be of the formula $(C_{12}H_{18})_2AgNO_3$. (Found: C, 58.37, 58.67; H, 7.33, 7.27; Calcd. C, 58.30; H, 7.34%.) Crystallographic data of both complexes are shown in Table I.

The infrared absorption spectra] of t, t, c-CDT and of both complexes are shown in Fig. 1. The absorption maximum at 970 cm⁻¹, which is assigned to an out-of-plane bending of the CH bond related to the trans (C=C bond, is shifted to 990 cm⁻¹ in the case of the α -type.

¹⁾ L. I. Zakharkin and V. V. Korneva, Doklady Akad. Nauk. S.S.S.R., 132, 1078 (1960).

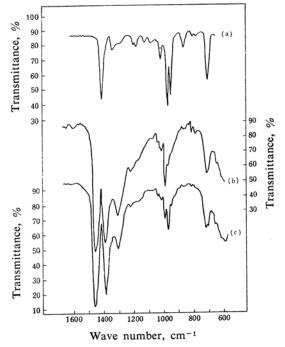


Fig. 1. Infrared spectra of

⁽a) trans, trans, cis-Cyclododecatriene,

⁽b) α -Type complex in Nujol and

⁽c) β -Type complex in Nujol.

TABLE I. CRYSTALLOGRAPHIC DATA OF trans, trans, cis-cyclododecatriene-silver nitrate

	Crystal system	a (A)	b (A)	c (A)	Probable space groups from mis- sing reflections
α-Type	Orthorhombic	15.72	17.62	9.66	$Cmc2_1, \\ Cmcm, \\ C2cm$
β-Type	Orthorhombic	5.35	15.34	29.80	Pbcn

On the other hand, in the case of β -type crystals, the absorption band at $970 \, \mathrm{cm}^{-1}$ still remains, and that at $990 \, \mathrm{cm}^{-1}$ is also observed. The absorption at $720 \, \mathrm{cm}^{-1}$, assigned to an out-of-plane bending of the CH bond related to the cis C=C bond, remains unchanged in both cases.

These facts suggest that both of the two trans C=C bonds of the α -type coordinate to the Ag^+ ion, but that only one of them does

in the case of the β -type and that the cis C=C bond remains free in both cases.

Preliminary X-ray work supports these conclusions. Details of the results of our X-ray crystal structure analysis will be reported in the near future.

Government Industrial Research Institute, Osaka Oyodo-ku, Osaka